

Evidence for PM Sources and Types Causing Premature Mortality

Dan Costa, Sc.D.

KL Dreher, MI Gilmour UP Kodavanti, W Linak, A. Miller

ETD / NHEERL / NRMRL / ORD

costa.dan @epa.gov

What is it About PM That Leads to Health Effects?

- Exposure Issues
- Susceptibility
- Mechanisms of Injury

Ambient PM: Potentially Hazardous Characteristics

- Particle Acidity (H⁺; SO₄⁼; NO₃⁻; NH₄⁺)
- Physical Properties (size; number; surface area)
- Organic Components (PAHs; quinones; peroxides)
- Inorganic Components (silicates; salts; oxides; metals)
- Biological Components (allergens; endotoxin)
- Co-pollutant Interactions w/ O₃; SO_x; NO_x; CO

The Challenge to Toxicologists

- In search of relatively rare events at low doses
- Ambient PM is a physicochemically complex & dynamic mixture of constituents derived from 1° and 2° sources

Criteria to Evaluate Toxicology Approaches to PM Plausibility Theories Regarding Attributes

- Are there environmental sources?
- Is there evidence of personal exposure?
- Is there sufficient toxic potential of the putative property?
- Can toxic mechanisms be extrapolated to the human exposure situation?
- Is there coherence with the epidemiology?
 - Consistency
 - Exposure-Response
- Does the theory hold across diverse exposures?

A Role for 'Acid' Aerosols?

SO₄ Aerosols

Epi (mortality / morbidity):

- Fine PM assoc: mortality, asthma hosp.

Lung Function:

- Healthy Adults: no effect at <1 mg/m³
- Asthmatics: effects at ~75 ug/m³
- Guinea pigs: effects at ~200 ug/m³

Host Defense:

- Altered mucociliary clearance 0.1 1mg/m³
- Altered AM function < 1 mg/m³

Airway Morphology:

- acute / chronic >>1 mg/m³:
 alveolitis, edema, epithelial damage
- chronic 0.125 0.5 mg/m³:
 - ↑ bronchial secretory cells (×O₃)

NO₃- Aerosols

Health Effects:

- Not as widely studied
- Generally minimal acutely
- South Calif. kids cohort?

A Role for Physical Properties?

Influence of Number and/or Surface Area on PM Toxicity

Wichmann et al., HEI Report 98:58, 2000

Oberdorster et al., HEI Report 96:22, 2000

A Role for Organic Constituents?

- Cancer Risk?
 - (Pope et al, 2002)
- Role of organics (quinones, nitroaromatics etc.) in oxidant production
 - (Sagai et al., 1997; Nel et al., 2001)
- Induction of T_{H2} cytokine profile & eosinophilic inflammation in airways & mediastinal lymph nodes
 - (Lovik et al, 1997, Sagai et al, 1996, Miyabara et al, 1998Tanako et al, 1997; Diaz-Sanchez et al., 1997)

Oxidants & Mortality

Sagai et al, Free Rad. Biol. & Med. 1993.

How would these criteria apply in the case of PM-associated metals?

Personal Cloud Exposure to Metals

Ozkaynak et al., JEAEE, 1996

Metals Accumulate in Human Lungs

Fortuol et al., EHP, 1996

Table 2. Mean concentrations of metals in lung tissue from the 1980s and the 1950s

	Mean ± SD (mg/g dry weight)		
Element	1980s (n = 84)	1950s (n = 69)	
Cadmium	25.6 ± 6.5	1.2 ± 0.37	
Cobalt	37.2 ± 8.67	3 ± 0.97	
Copper	44.8 ± 15.7	10 ± 2.97	
Nickel	57.6 ± 9.3	3 ± 0.96	
Lead	134.3 ± 26.7	12 ± 4.97	

A Role for Metals in PM Health Effects: Primary Combustion PM - ROFA

% OC: 1 % EC: 0

Sulfate: 560 µg/mg

Water Soluble Metal: 88%

Altered Permeability

Dreher et al., 1997 Gavett et al., 1997

A Role for Metals: Ambient PM

Interactive Roles for Acid Sulfates?

- Historic tox data base of PM + SO₂
 - (Amdur et al. '60's '80's)
- Epi data shows occasional copollutants NO₂, SO₂, CO, O₃
 (Burnett et al, 1998; Gold et al., 1999; Wichmann et al., 2000)

Pulmonary Inflammation

No effects observed with Na₂SO₄

'Acids' What Now?

- Sulfates (nitrates?) –
 surrogates or culprits (déjà vu);
 maybe it depends on coconstituents
- May act as irritants to alter autonomic control of cardiac function as well as PFT's in some individuals
- Complex and unclear 1° and 2° roles of acids as part of the PM complex

Complex Acid Photochemistry May Help Mobilize Metals from PM

Ghio et al., 1999

Sources of PM₁₀ Pollution in the Utah Valley (1985-87)

Geneva Steel 82% of industrial emissions when operating

47-80% of total emissions

Wood Burning 16%
Road Dust 11%
Diesel Fuel 7%
Oil Combustion 7%

Real-World Role for Metals?

Utah Valley filter extract metal analysis

Dye et al, EHP 2001

How does oil fly ash with different metal composition affect toxicity?

- Ten oil fly ash samples (boiler)
- Determine [metal] total and soluble

```
Low, Moderate (V),
High (Ni +V)
```

- Establish relative toxicity at 24 hr
- Use multiple regression and correlation analysis

Associations of Nickel and Vanadium with lung injury and inflammation

BAL Protein

Nickel 10000 = 0.878000 0.0001 6000 4000 2000 Soluble Ni (µg/mg PM)

BAL PMNs

Are the range of sizes of combustion PM of oil of similarly toxicity?

North American Package Boiler

BOILER DIAGRAM

PARTICLE COLLECTION

North American Model 61121-2.5H6-A65, three pass, fire-tube package boiler (NAPB).

PHYSICOCHEMICAL ANALYSIS OF FUGITIVE (PM<2.5) AND RETAINED (PM>2.5) HS#6 AND BL#5H ROFAs

PULMONARY TOXICITY OF FUGITIVE (PM<2.5) AND RETAINED (PM>2.5) ROFA HS#6

What about coal emission PM?

Typical coal combustor system used in both large scale (power production) and small scale (experimental) situations

Size distribution of two types of coal after combustion in a pilot scale utility boiler

Electron micrographs of three different fractions of Montana coal fly ash

Coarse

Fine

Ultrafine

Elemental analysis of ultrafine, fine and coarse coal fly ash

Element μg/g ash	MT UF	MT <2.5μm	MT>2.5 μm
Al	93,780	103,979	108,800
Ca	82,900	89,858	115,175
Fe	6,920	53,929	30,350
S	39,400	7070	9,130
Mg	14,600	27,721	31,300
Ti	1845	6353	6180
K	1155	9358	5660
Cl	659	1264	1460
Ва	16200	2298	1843
Р	10530	1080	979
Sr	7480	3426	3858
V	712	208	108
Ni	330	347	
Nb	910	176	22
Mn	487	1048	907
Cd	1620	463	
Se	565	136	
Ga	460	83	27
Cu	420	320	77
Elements %	22.5	47	54
Oxygen %	16.5	44.5	45
Carbon %	unknown	0.4	0.5

Effect of coal fly ash instillation on PMN numbers in mouse lungs

Effect of coal fly ash instillation on TNF-a levels in mouse lungs

Effect of coal fly ash incubation on LDH release from rat alveolar macrophages

Health Effects of Source Specific Particles

What are Alternate Approaches?

Factor Analysis - Reduces Many Variables to a Small Number of Factors

Observations

Linking Health Effects to Specific Sources

Source-Specific PM_{2.5} and Daily Mortality in Six US Cities Laden et al., EHP 2000

- PM_{2.5} associated with daily mortality in six cities (1980's)
- Factor analysis of elemental composition of PM_{2.5} used to estimate source-specific concentrations
- Associations estimated with 4 source classes (10 μg/m³)
 - Crustal (Si)
 - Motor Vehicle (Pb)
 - Coal (Se)
 - Residual Oil (V, Mn)

Conclusions

- ► TOX studies: plausibility, hazard ID, mechanisms
- ► High doses often necessary to see effects more sensitive models, methods, & approaches needed
- There appears to be strong size and composition dependency of emission PM
- There is need for data on toxicity of specific sources of air pollution and mixtures of sources
- Collaboration between epidemiology and toxicology will result in findings of stronger associations of health effects with air pollutants than can be achieved by either discipline alone.

Future Research

Novel areas:

- Application of factor analysis (related approaches) may provide a fruitful area for epi & tox research to assess health effects of specific sources of PM - on <u>specific health</u> <u>outcomes</u> (CVD, COPD, pneumonia) – beneficial to regulatory agencies.
- Mixtures studies by combining sources?
- Genomics, proteomics approaches to scope specific effects; may allow high through put analyses.
- Opportunities for future studies: Exploit toxicologyepidemiology analogies to define contributing toxicants in the PM complex - specific sources of PM – e.g. speciation sites

Mortality Scenario: Fatal Arrhythmia (?)

